Model errors are increasingly seen as a fundamental performance limiter in both Numerical Weather Prediction and Climate Prediction simulations run with state of the art Earth system digital twins.This has motivated recent efforts aimed at estimating and correcting the systematic, predictable components of model error in a consistent data assimilation framework. While encouraging results have been obtained with a careful examination of the spatial aspects of the model error estimates, less attention has been devoted to the time correlation aspects of model errors and their impact on the assimilation cycle. In this work we employ a Lagged Analysis Increment Covariance (LAIG) diagnostic to gain insight in the temporal evolution of systematic model errors in the ECMWF operational data assimilation system, evaluate the effectiveness of the current weak constraint 4DVar algorithm in reducing these types of errors and, based on these findings,start exploring new ideas for the development of model error estimation and correction strategies in data assimilation.
翻译:模型错误日益被视为与最新地球系统数字双胞胎一起运行的数值天气预测和气候预测模拟中的基本性能限制因素。这促使最近作出努力,在一致的数据同化框架内估计和纠正模型错误的系统、可预测的组成部分。虽然通过仔细审查模型错误估计的空间方面获得了令人鼓舞的结果,但对模型错误的时间相关方面及其对同化周期的影响的关注却较少。在这项工作中,我们采用了一个Locket 分析加差(LAIG)诊断方法,以深入了解ECMF操作数据同化系统中系统模型错误的时间演变,评估目前薄弱的制约 4DVar算法在减少这类错误方面的效力,并根据这些调查结果开始探索新的想法,以制定模型错误估计和数据同化的纠正战略。