This article presents a filter for state-space models based on Bellman's dynamic programming principle applied to the mode estimator. The proposed Bellman filter generalises the Kalman filter including its extended and iterated versions, while remaining equally inexpensive computationally. The Bellman filter is also (unlike the Kalman filter) robust under heavy-tailed observation noise and applicable to a wider range of (nonlinear and non-Gaussian) models, involving e.g. count, intensity, duration, volatility and dependence. The Bellman-filtered states are shown to be convergent, in quadratic mean, towards a small region around the true state. (Hyper)parameters are estimated by numerically maximising a filter-implied log-likelihood decomposition, which is an alternative to the classic prediction-error decomposition for linear Gaussian models. Simulation studies reveal that the Bellman filter performs on par with (or even outperforms) state-of-the-art simulation-based techniques, e.g. particle filters and importance samplers, while requiring a fraction (e.g. 1%) of the computational cost, being straightforward to implement and offering full scalability to higher dimensional state spaces.


翻译:本文章根据Bellman的动态编程原则,为适用于模式估测器的州空间模型提供了一个过滤器。 Bellman 过滤器将Kalman过滤器(包括其扩展版和迭代版版)概括为Kalman过滤器,同时以同样廉价的方式计算。Bellman 过滤器(与Kalman过滤器不同)在重尾观测噪音下也很强大,并且适用于范围更广的(非线性和非Gauussian)模型,例如计数、强度、持续期、波动性和依赖性。 Bellman 过滤器状态显示,以二次等平均值,接近真实状态周围的小区域。 (Hyper) 参数通过从数字上最大化过滤器简化的日志相似性分解定位来估算。 这是对典型的预测器分解(非线性和非Gausian)模型的一种替代。模拟研究表明,Bellman 过滤器与(甚至超常规的) 状态模拟技术(例如粒子过滤器和重要采样器), 需要完全的精确度计算。

0
下载
关闭预览

相关内容

卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
图像处理:从 bilateral filter 到 HDRnet
极市平台
30+阅读 · 2019年8月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年8月7日
Arxiv
0+阅读 · 2021年8月6日
Arxiv
0+阅读 · 2021年8月6日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
图像处理:从 bilateral filter 到 HDRnet
极市平台
30+阅读 · 2019年8月7日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员