Semi-lagrangian schemes for discretization of the dynamic programming principle are based on a time discretization projected on a state-space grid. The use of a structured grid makes this approach not feasible for high-dimensional problems due to the curse of dimensionality. Here, we present a new approach for infinite horizon optimal control problems where the value function is computed using Radial Basis Functions (RBF) by the Shepard's moving least squares approximation method on scattered grids. We propose a new method to generate a scattered mesh driven by the dynamics and the selection of the shape parameter in the RBF using an optimization routine. This mesh will help to localize the problem and approximate the dynamic programming principle in high dimension. Error estimates for the value function are also provided. Numerical tests for high dimensional problems will show the effectiveness of the proposed method.
翻译:用于分散动态编程原则的半拉拉格朗计划基于在州-空间网格上预测的时间分解。 使用结构化网格使得这一方法对于由于维度的诅咒而导致的高维问题不可行。 在这里,我们提出了一个关于无限地平线最佳控制问题的新方法, 其值函数是用Sherpard移动的最小正方形近似法在分散的网格上计算出来的。 我们提出了一种新的方法, 以产生一个分散的网格, 由动态驱动, 并使用优化常规程序选择 RBF 的形状参数。 这个网格将帮助将问题本地化, 并接近动态编程原则的高维度。 还提供了价值函数的错误估计。 对高方形问题的数值测试将显示拟议方法的有效性 。