Using computational techniques we provide a framework for proving results on subclasses of planar graphs via discharging method. The aim of this paper is to apply these techniques to study the 2-distance coloring of planar subcubic graphs. Applying these techniques we show that every subcubic planar graph $G$ of girth at least 8 has 2-distance chromatic number at most 6.
翻译:使用计算技术,我们提供了一个框架,通过排放方法来证明平面图子类的结果。本文的目的是应用这些技术来研究平面下立方图的两远颜色。运用这些技术,我们显示,至少8 girth 的每个子立方平面图$G$最多有6个两个远色数。