We propose a test of many zero parameter restrictions in a high dimensional linear iid regression model. The test statistic is formed by estimating key parameters one at a time based on many low dimension regression models with nuisance terms. The parsimoniously parametrized models identify whether the original parameter of interest is or is not zero. Estimating fixed low dimension sub-parameters ensures greater estimator accuracy, does not require a sparsity assumption, and using only the largest in a sequence of weighted estimators reduces test statistic complexity and therefore estimation error. We provide a parametric wild bootstrap for p-value computation, and prove the test is consistent and has non-trivial root(n/ln(n))-local-to-null power.
翻译:我们建议在一个高维线性回归模型中测试许多零参数限制。 测试统计数据是通过根据许多低维回归模型和骚扰性条件对关键参数进行一次估算而形成的。 分辨的半称模型确定原始利益参数是否为零。 估计固定低维次参数可以确保更高的估计精确度,不需要宽度假设,而只在加权估计数据序列中使用最大参数,可以降低测试统计复杂性,从而降低估计错误。 我们为p- value 计算提供了一个参数参数性野靴,并证明测试是一致的,并且具有非三维根(n/ ln)- 本地到核的能量。