In this paper, we make the first attempt to apply the boundary integrated neural networks (BINNs) for the numerical solution of two-dimensional (2D) elastostatic and piezoelectric problems. BINNs combine artificial neural networks with the well-established boundary integral equations (BIEs) to effectively solve partial differential equations (PDEs). The BIEs are utilized to map all the unknowns onto the boundary, after which these unknowns are approximated using artificial neural networks and resolved via a training process. In contrast to traditional neural network-based methods, the current BINNs offer several distinct advantages. First, by embedding BIEs into the learning procedure, BINNs only need to discretize the boundary of the solution domain, which can lead to a faster and more stable learning process (only the boundary conditions need to be fitted during the training). Second, the differential operator with respect to the PDEs is substituted by an integral operator, which effectively eliminates the need for additional differentiation of the neural networks (high-order derivatives of neural networks may lead to instability in learning). Third, the loss function of the BINNs only contains the residuals of the BIEs, as all the boundary conditions have been inherently incorporated within the formulation. Therefore, there is no necessity for employing any weighing functions, which are commonly used in traditional methods to balance the gradients among different objective functions. Moreover, BINNs possess the ability to tackle PDEs in unbounded domains since the integral representation remains valid for both bounded and unbounded domains. Extensive numerical experiments show that BINNs are much easier to train and usually give more accurate learning solutions as compared to traditional neural network-based methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员