Transfer learning is an emerging and popular paradigm for utilizing existing knowledge from previous learning tasks to improve the performance of new ones. Despite its numerous empirical successes, theoretical analysis for transfer learning is limited. In this paper we build for the first time, to the best of our knowledge, a mathematical framework for the general procedure of transfer learning. Our unique reformulation of transfer learning as an optimization problem allows for the first time, analysis of its feasibility. Additionally, we propose a novel concept of transfer risk to evaluate transferability of transfer learning. Our numerical studies using the Office-31 dataset demonstrate the potential and benefits of incorporating transfer risk in the evaluation of transfer learning performance.
翻译:转让学习是利用以往学习任务的现有知识来改进新学习任务绩效的新模式和流行模式。尽管取得了许多经验性的成功,但转让学习的理论分析是有限的。在本文件中,我们首次根据我们的最佳知识,为转让学习的一般程序建立了一个数学框架。我们独特的转移学习作为优化问题,第一次可以分析其可行性。此外,我们提出了一个新的转让风险概念,以评价转让学习的可转让性。我们利用Office-31数据集进行的数字研究显示了将转让风险纳入转让学习业绩评价的潜力和好处。