Short video has witnessed rapid growth in the past few years in e-commerce platforms like Taobao. To ensure the freshness of the content, platforms need to release a large number of new videos every day, making conventional click-through rate (CTR) prediction methods suffer from the item cold-start problem. In this paper, we propose GIFT, an efficient Graph-guIded Feature Transfer system, to fully take advantages of the rich information of warmed-up videos to compensate for the cold-start ones. Specifically, we establish a heterogeneous graph that contains physical and semantic linkages to guide the feature transfer process from warmed-up video to cold-start videos. The physical linkages represent explicit relationships, while the semantic linkages measure the proximity of multi-modal representations of two videos. We elaborately design the feature transfer function to make aware of different types of transferred features (e.g., id representations and historical statistics) from different metapaths on the graph. We conduct extensive experiments on a large real-world dataset, and the results show that our GIFT system outperforms SOTA methods significantly and brings a 6.82% lift on CTR in the homepage of Taobao App.
翻译:短视频在过去几年里在Taobao等电子商务平台上快速增长。 为了确保内容的新鲜性,平台需要每天发布大量新视频,使常规点击率(CTR)预测方法受到冷启动问题的困扰。在本文件中,我们提议GIFT,一个高效的图形支持地貌传输系统,充分利用热热热视频的丰富信息,以弥补冷启动的视频。具体地说,我们建立了一个包含物理和语义链接的多元图,以指导从暖起的视频到冷启动视频的特征传输过程。这些物理链接代表了明确的关系,而语义连接测量了两个视频的多模式表达的近距离。我们精心设计了功能转换功能,以了解图表上不同类型传输的特征(如模拟和历史统计数据 ) 。我们在一个大型真实世界数据集上进行了广泛的实验,结果显示,我们的GIFT系统大大超越了SOTA的方法, 并在Appeal TA中带来了6.82 % 的升级。