In this paper, we describe a universal method for extracting the underlying monotonic trend factor from time series data. We propose an approach related to the Mann-Kendall test, a standard monotonic trend detection method and call it contrastive trend estimation (CTE). We show that the CTE method identifies any hidden trend underlying temporal data while avoiding the standard assumptions used for monotonic trend identification. In particular, CTE can take any type of temporal data (vector, images, graphs, time series, etc.) as input. We finally illustrate the interest of our CTE method through several experiments on different types of data and problems.
翻译:在本文中,我们描述了一种从时间序列数据中提取基本单体趋势系数的普遍方法,我们提出了与曼-肯德尔测试相关的方法,这是一种标准的单体趋势探测方法,称其为对比性趋势估计(CTE)。我们表明,CTE方法识别了任何隐藏的、基于时间数据的趋势,同时避免了用于单体趋势识别的标准假设。特别是,CTE可以将任何类型的时间数据(矢量、图像、图表、时间序列等)作为输入。我们最后通过对不同类型的数据和问题进行多次实验,表明了我们CTE方法的兴趣。