Rigid Point Cloud Registration (PCR) algorithms aim to estimate the 6-DOF relative motion between two point clouds, which is important in various fields, including autonomous driving. Recent years have seen a significant improvement in global PCR algorithms, i.e. algorithms that can handle a large relative motion. This has been demonstrated in various scenarios, including indoor scenes, but has only been minimally tested in the Automotive setting, where point clouds are produced by vehicle-mounted LiDAR sensors. In this work, we aim to answer questions that are important for automotive applications, including: which of the new algorithms is the most accurate, and which is fastest? How transferable are deep-learning approaches, e.g. what happens when you train a network with data from Boston, and run it in a vehicle in Singapore? How small can the overlap between point clouds be before the algorithms start to deteriorate? To what extent are the algorithms rotation invariant? Our results are at times surprising. When comparing robust parameter estimation methods for registration, we find that the fastest and most accurate is not one of the newest approaches. Instead, it is a modern variant of the well known RANSAC technique. We also suggest a new outlier filtering method, Grid-Prioritized Filtering (GPF), to further improve it. An additional contribution of this work is an algorithm for selecting challenging sets of frame-pairs from automotive LiDAR datasets. This enables meaningful benchmarking in the Automotive LiDAR setting, and can also improve training for learning algorithms.


翻译:硬点云注册( PCR) 算法旨在估计两个点云之间的6-DOF相对运动,这在各个领域都很重要, 包括自主驾驶。 近些年来, 全球 PCR 算法, 也就是能够处理大相对运动的算法有了显著的改进。 这在各种假设中都得到了证明, 包括室内场景, 但是在汽车环境下, 点云是由车载LIDAR传感器生成的, 而在汽车环境中, 点云是由车载LIDAR 传感器生成的。 在这项工作中, 我们的目标是回答对于汽车应用来说很重要的问题, 包括: 哪些新算法最准确, 哪些最快? 深层次的学习方法是如何转移的, 例如, 当您用波士顿的数据来训练网络, 在新加坡的车辆中运行时会发生什么变化? 当算法开始恶化之前, 点云之间的重叠有多大? 我们的结果有时令人吃惊。 在比较稳健的参数估算方法时, 我们发现, 快速和最准确的不是最新的方法之一 。 相反,, 也就是用这个数字AAR 方法的现代变法,, 也显示它是一个已知的升级法。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月27日
Arxiv
0+阅读 · 2023年1月27日
Nonparametric Regression for 3D Point Cloud Learning
Arxiv
0+阅读 · 2023年1月26日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员