We construct explicitly two sequences of triplewise independent random variables having a common but arbitrary marginal distribution $F$ (satisfying very mild conditions) for which a Central Limit Theorem (CLT) does not hold. We obtain, in closed form, the asymptotic distributions of the sample means of those sequences, which are seen to depend on the specific choice of $F$. This allows us to illustrate the extent of the `failure' of the classical CLT under triplewise independence. Our methodology is simple and can also be used to create, for any integer $K$, new $K$-tuplewise independent but dependent sequences (which are useful to assess the ability of independence tests to detect complex dependence). For $K \geq 4$, it appears that the sequences thus created do verify a CLT, and we explain heuristically why this is the case.


翻译:我们明确构建了两个三维独立的随机变量序列,这些变量具有共同但任意的边际分布值$F(满足非常温和的条件),中央限制理论(CLT)对此没有保留。我们以封闭的形式获得了这些序列抽样手段的无症状分布,这似乎取决于具体选择$F。这使我们能够说明经典CLT在三维独立情况下的“失败”程度。我们的方法很简单,也可以用来为任何整数美元创造新的独立但依赖性的单数序列(用于评估独立测试检测复杂依赖性的能力 ) 。 对于 $K\geq 4 美元, 由此创建的序列似乎确实验证了CLT, 我们从理论上解释了为什么情况如此。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年6月1日
Arxiv
0+阅读 · 2021年5月30日
Arxiv
0+阅读 · 2021年5月29日
2nd-order Updates with 1st-order Complexity
Arxiv
0+阅读 · 2021年5月27日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员