We present a tractable non-independent increment process which provides a high modeling flexibility. The process lies on an extension of the so-called Harris chains to continuous time being stationary and Feller. We exhibit constructions, properties, and inference methods for the process. Afterwards, we use the process to propose a stochastic volatility model with an arbitrary but fixed invariant distribution, which can be tailored to fit different applied scenarios. We study the model performance through simulation while illustrating its use in practice with empirical work. The model proves to be an interesting competitor to a number of short-range stochastic volatility models.
翻译:我们提出了一个可伸缩的非独立递增过程,它提供了高度的模型灵活性。这个过程在于将所谓的哈里斯链扩展至连续时间的固定和Feller。我们展示了这个过程的构造、属性和推论方法。随后,我们利用这个过程来提出一个任意但固定的变异分布的随机随机可变性模型,该模型可以适合不同的应用情景。我们通过模拟来研究模型的性能,同时用经验工作来说明其实际应用。这个模型证明是一些短程随机可变性模型的一个有趣的竞争者。