Code comments are vital to source code as they help developers with program comprehension tasks. Written in natural language (usually English), code comments convey a variety of different information, which are grouped into specific categories. In this study, we construct 19 binary machine learning classifiers for code comment categories that belong to three different programming languages. We present a comparison of performance scores for different types of machine learning classifiers and show that the Linear SVC classifier has the highest average F1 score of 0.5474.
翻译:代码注释对于源代码至关重要, 因为它们帮助开发者执行程序理解任务 。 代码注释用自然语言( 通常是英语) 编写, 代码注释传达了各种不同的信息, 这些信息被分类为特定类别 。 在本研究中, 我们为属于三种不同程序语言的代码注释类别建造了 19 个二进制机器学习分类器 。 我们比较了不同类型机器学习分类器的性能分数, 并显示Linar SVC 分类器的F1 平均最高分为 0.5474 。</s>