Debiased machine learning (DML) offers an attractive way to estimate treatment effects in observational settings, where identification of causal parameters requires a conditional independence or unconfoundedness assumption, since it allows to control flexibly for a potentially very large number of covariates. This paper gives novel finite-sample guarantees for joint inference on high-dimensional DML, bounding how far the finite-sample distribution of the estimator is from its asymptotic Gaussian approximation. These guarantees are useful to applied researchers, as they are informative about how far off the coverage of joint confidence bands can be from the nominal level. There are many settings where high-dimensional causal parameters may be of interest, such as the ATE of many treatment profiles, or the ATE of a treatment on many outcomes. We also cover infinite-dimensional parameters, such as impacts on the entire marginal distribution of potential outcomes. The finite-sample guarantees in this paper complement the existing results on consistency and asymptotic normality of DML estimators, which are either asymptotic or treat only the one-dimensional case.


翻译:有偏差的机器学习(DML)为估计观察环境中的治疗效果提供了一种有吸引力的方法,在观察环境中,确定因果关系参数需要有条件的独立或无根据的假设,因为它允许灵活控制潜在的大量共变体。本文为高维DML的联合推断提供了新的有限抽样保障,其中对估算器的有限抽样分布与其非现成的高斯近似值之间的距离作出了多少限制抽样分布进行了限定。这些保障对应用研究人员是有用的,因为它们有助于了解联合信任带的覆盖范围离名义水平有多远。在很多情况下,高维因参数可能值得注意,例如许多治疗剖面的大小,或许多结果的治疗范围。我们还涵盖了无限的参数,例如对潜在结果的整个边缘分布的影响。本文中的有限抽样保证补充了DML估计器的连续性和无症状常态性的现有结果,这些结果要么是被动的,要么只是一维的。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月2日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员