Next-item prediction is a a popular problem in the recommender systems domain. As the name suggests, the task is to recommend subsequent items that a user would be interested in given contextual information and historical interaction data. In our paper, we model a general notion of context via a sequence of item interactions. We model the next item prediction problem using the Bayesian framework and capture the probability of appearance of a sequence through the posterior mean of the Beta distribution. We train two neural networks to accurately predict the alpha & beta parameter values of the Beta distribution. Our novel approach of combining black-box style neural networks, known to be suitable for function approximation with Bayesian estimation methods have resulted in an innovative method that outperforms various state-of-the-art baselines. We demonstrate the effectiveness of our method in two real world datasets. Our framework is an important step towards the goal of building privacy preserving recommender systems.
翻译:下一个项目预测是推荐者系统域中流行的问题。 如名称所示, 任务在于推荐用户对特定背景信息和历史互动数据感兴趣的后续项目。 在我们的论文中, 我们通过一系列项目互动来模拟一个总体背景概念。 我们用巴伊西亚框架来模拟下一个项目预测问题, 并用Beta分布的后端值来捕捉一个序列的出现概率。 我们训练了两个神经网络, 以准确预测Beta分布的阿尔法和贝塔参数值。 我们的黑盒风格神经网络新颖的结合方法, 已知适合与Bayesian估算方法相近的功能, 产生了一种超越各种最新基线的创新方法。 我们在两个真实的世界数据集中展示了我们的方法的有效性。 我们的框架是朝着建立隐私保护推荐系统的目标迈出的重要一步。