Let $G=(V,E)$ be a simple undirected graph. The open neighbourhood of a vertex $v$ in $G$ is defined as $N_G(v)=\{u\in V~|~ uv\in E\}$; whereas the closed neighbourhood is defined as $N_G[v]= N_G(v)\cup \{v\}$. For an integer $k$, a subset $D\subseteq V$ is called a $k$-vertex-edge dominating set of $G$ if for every edge $uv\in E$, $|(N_G[u]\cup N_G[v]) \cap D|\geq k$. In $k$-vertex-edge domination problem, our goal is to find a $k$-vertex-edge dominating set of minimum cardinality of an input graph $G$. In this paper, we first prove that the decision version of $k$-vertex-edge domination problem is NP-complete for chordal graphs. On the positive side, we design a linear time algorithm for finding a minimum $k$-vertex-edge dominating set of tree. We also prove that there is a $O(\log(\Delta(G)))$-approximation algorithm for this problem in general graph $G$, where $\Delta(G)$ is the maximum degree of $G$. Then we show that for a graph $G$ with $n$ vertices, this problem cannot be approximated within a factor of $(1-\epsilon) \ln n$ for any $\epsilon >0$ unless $NP\subseteq DTIME(|V|^{O(\log\log|V|)})$. Finally, we prove that it is APX-complete for graphs with bounded degree $k+3$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月23日
Arxiv
0+阅读 · 2023年11月23日
Arxiv
0+阅读 · 2023年11月22日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员