We propose a two-phase systematical framework for approximation algorithm design and analysis via Lyapunov function. The first phase consists of using Lyapunov function as a guideline to design a continuous-time algorithm with provable approximation ratio. The second phase then converts the continuous-time algorithm to a discrete-time algorithm with the same approximation ratio and a provable time complexity. Some immediate benefits of the Lyapunov function approach include: (i) unifying many existing algorithms; (ii) providing a guideline to design and analyze new algorithms; and (iii) offer new perspectives to potentially improve existing algorithms. We use various submodular maximization problems as running examples to illustrate our framework.
翻译:我们提出了一个通过 Lyapunov 函数进行近似算法设计和分析的两阶段系统框架; 第一阶段包括使用 Lyapunov 函数作为设计具有可证实近似比率的连续时间算法的指导方针; 第二阶段然后将连续时间算法转换为具有相同近似比率和可证实时间复杂性的离散时间算法。 Lyapunov 函数法的一些直接好处包括:(一) 统一许多现有的算法;(二) 为设计和分析新的算法提供指导方针; 以及(三) 为可能改进现有算法提供新的观点。 我们用各种子模式最大化问题作为实例来说明我们的框架。