We prove normalization for MTT, a general multimodal dependent type theory capable of expressing modal type theories for guarded recursion, internalized parametricity, and various other prototypical modal situations. We prove that deciding type checking and conversion in MTT can be reduced to deciding the equality of modalities in the underlying modal situation, immediately yielding a type checking algorithm for all instantiations of MTT in the literature. This proof uses a generalization of synthetic Tait computability -- an abstract approach to gluing proofs -- to account for modalities. This extension is based on MTT itself, so that this proof also constitutes a significant case study of MTT.
翻译:我们证明MTT是一种一般多式联运依赖型理论的正常化,它能够表达谨慎循环、内化的参数和其他各种原型型型样的模型理论。我们证明,在MTT中决定类型检查和转换可以简化到决定基本模式情况下的模式平等,立即产生一种类型检查算法,用于文献中MTT的所有即时计算。这一证据使用合成塔伊特可计算性(一种抽象的粘合证据方法)来说明模式。这一扩展是以MTT本身为基础的,因此这一证据也构成MTT的重要案例研究。