Analog circuit sizing takes a significant amount of manual effort in a typical design cycle. With rapidly developing technology and tight schedules, bringing automated solutions for sizing has attracted great attention. This paper presents DNN-Opt, a Reinforcement Learning (RL) inspired Deep Neural Network (DNN) based black-box optimization framework for analog circuit sizing. The key contributions of this paper are a novel sample-efficient two-stage deep learning optimization framework leveraging RL actor-critic algorithms, and a recipe to extend it on large industrial circuits using critical device identification. Our method shows 5--30x sample efficiency compared to other black-box optimization methods both on small building blocks and on large industrial circuits with better performance metrics. To the best of our knowledge, this is the first application of DNN-based circuit sizing on industrial scale circuits.
翻译:模拟电路化在典型的设计周期中需要大量人工操作。 随着技术的迅速发展以及时间的紧凑, 带来自动的裁剪解决方案引起了极大关注。 本文展示了DNN- Opt, 一个基于深神经网络的强化学习( RL) 启发黑盒优化框架, 用于模拟电路化。 本文的主要贡献是一个新型的、 样本高效的两阶段深学习优化框架, 利用RL 的演算法, 以及一种利用关键设备识别技术将其推广到大型工业电路的秘方。 我们的方法显示, 相对于其他黑盒优化方法, 小建筑块和大型工业电路的样本效率是5- 30x 。 对我们所知最好的是, 这是在工业规模电路上首次应用基于 DNN 的电路化。