We study the problem of learning decentralized linear quadratic regulator when the system model is unknown a priori. We propose an online learning algorithm that adaptively designs a control policy as new data samples from a single system trajectory become available. Our algorithm design uses a disturbance-feedback representation of state-feedback controllers coupled with online convex optimization with memory and delayed feedback. We show that our controller enjoys an expected regret that scales as $\sqrt{T}$ with the time horizon $T$ for the case of partially nested information pattern. For more general information patterns, the optimal controller is unknown even if the system model is known. In this case, the regret of our controller is shown with respect to a linear sub-optimal controller. We validate our theoretical findings using numerical experiments.
翻译:暂无翻译