The increasingly stringent regulations on privacy protection have sparked interest in federated learning. As a distributed machine learning framework, it bridges isolated data islands by training a global model over devices while keeping data localized. Specific to recommendation systems, many federated recommendation algorithms have been proposed to realize the privacy-preserving collaborative recommendation. However, several constraints remain largely unexplored. One big concern is how to ensure fairness between participants of federated learning, that is, to maintain the uniformity of recommendation performance across devices. On the other hand, due to data heterogeneity and limited networks, additional challenges occur in the convergence speed. To address these problems, in this paper, we first propose a personalized federated recommendation system training algorithm to improve the recommendation performance fairness. Then we adopt a clustering-based aggregation method to accelerate the training process. Combining the two components, we proposed Cali3F, a calibrated fast and fair federated recommendation framework. Cali3F not only addresses the convergence problem by a within-cluster parameter sharing approach but also significantly boosts fairness by calibrating local models with the global model. We demonstrate the performance of Cali3F across standard benchmark datasets and explore the efficacy in comparison to traditional aggregation approaches.


翻译:关于隐私保护的日益严格的规章引起了对联合会学习的兴趣。作为一个分布式的机器学习框架,它通过在保持数据本地化的同时对设备进行全球模型培训,将孤立的数据岛屿连接起来。针对建议系统,提出了许多联合建议算法,以落实隐私保护协作建议。然而,一些制约因素基本上尚未探讨。一个大的问题是如何确保联合会学习参与者之间的公平,即保持各设备之间建议性能的统一。另一方面,由于数据差异性和网络有限,在趋同速度方面出现了更多的挑战。为了解决这些问题,我们在本文中首先提出了个性化的联邦建议系统培训算法,以提高建议性公平性。然后我们采用了基于集群的汇总方法,以加快培训进程。我们提出了两个组成部分,即Cali3F,一个经过校准的快速和公平联邦化建议框架。Cali3F不仅通过组合内参数共享方法解决了趋同问题,而且还通过校准地方模型来大大增强公平性。我们展示了Cali3F在标准基准方法与标准数据集比度方面的业绩。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月12日
Arxiv
91+阅读 · 2020年2月28日
Arxiv
22+阅读 · 2018年8月3日
Arxiv
13+阅读 · 2018年4月18日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员