In this article, we are interested in the high dimensional normal approximation of $T_n =\Big(\sum_{i=1}^{n}X_{i1}/\Big(\sqrt{\sum_{i=1}^{n}X_{i1}^2}\Big),\dots,$ $\sum_{i=1}^{n}X_{ip}/\Big(\sqrt{\sum_{i=1}^{n}X_{ip}^2}\Big)\Big)$ in $\mathcal{R}^p$ uniformly over the class of hyper-rectangles $\mathcal{A}^{re}=\{\prod_{j=1}^{p}[a_j,b_j]\cap\mathcal{R}:-\infty\leq a_j\leq b_j \leq \infty, j=1,\ldots,p\}$, where $X_1,\dots,X_n$ are non-degenerate independent $p-$dimensional random vectors. We assume that the components of $X_i$ are independent and identically distributed (iid) and investigate the optimal cut-off rate of $\log p$ in the uniform central limit theorem (UCLT) for $T_n$ over $\mathcal{A}^{re}$. The aim is to reduce the exponential moment conditions, generally assumed for exponential growth of the dimension with respect to the sample size in high dimensional CLT, to some polynomial moment conditions. Indeed, we establish that only the existence of some polynomial moment of order $\in [2,4]$ is sufficient for exponential growth of $p$. However the rate of growth of $\log p$ can not further be improved from $o\big(n^{1/2}\big)$ as a power of $n$ even if $X_{ij}$'s are iid across $(i,j)$ and $X_{11}$ is bounded. We also establish near$-n^{-\kappa/2}$ Berry-Esseen rate for $T_n$ in high dimension under the existence of $(2+\kappa)$th absolute moments of $X_{ij}$ for $0< \kappa \leq 1$. When $\kappa =1$, the obtained Berry-Esseen rate is also shown to be optimal. As an application, we find respective versions for component-wise Student's t-statistic, which may be useful in high dimensional statistical inference.


翻译:在此文章中, 我们感兴趣的是 $2 的高度正常水平 $( =sum ⁇ i=1美元) =Big( =sqrt=1 ⁇ n}X) /\Big( =1 ⁇ i1 ⁇ 2 ⁇ Big) /\Big( =ssqrt=1 ⁇ n}X) 美元( massal=xcal=1美元) =x( =xcal=美元 美元) =xx( =美元) =xx( 美元) =xx( =美元) =xx( 美元) =xx( 美元) =( 美元) =xx( 美元) =( 美元) =美元( =美元) =( =美元) =( =美元) =( 美元) =( 美元) =( =( 美元) =( 美元) =( =( 美元) =( 美元) =( 美元) =( 美元) 美元) =( =( 美元) =( 美元) 美元) =( 美元) =(美元) =(

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
241+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员