In this article, we are interested in the high dimensional normal approximation of $T_n =\Big(\sum_{i=1}^{n}X_{i1}/\Big(\sqrt{\sum_{i=1}^{n}X_{i1}^2}\Big),\dots,$ $\sum_{i=1}^{n}X_{ip}/\Big(\sqrt{\sum_{i=1}^{n}X_{ip}^2}\Big)\Big)$ in $\mathcal{R}^p$ uniformly over the class of hyper-rectangles $\mathcal{A}^{re}=\{\prod_{j=1}^{p}[a_j,b_j]\cap\mathcal{R}:-\infty\leq a_j\leq b_j \leq \infty, j=1,\ldots,p\}$, where $X_1,\dots,X_n$ are non-degenerate independent $p-$dimensional random vectors. We assume that the components of $X_i$ are independent and identically distributed (iid) and investigate the optimal cut-off rate of $\log p$ in the uniform central limit theorem (UCLT) for $T_n$ over $\mathcal{A}^{re}$. The aim is to reduce the exponential moment conditions, generally assumed for exponential growth of the dimension with respect to the sample size in high dimensional CLT, to some polynomial moment conditions. Indeed, we establish that only the existence of some polynomial moment of order $\in [2,4]$ is sufficient for exponential growth of $p$. However the rate of growth of $\log p$ can not further be improved from $o\big(n^{1/2}\big)$ as a power of $n$ even if $X_{ij}$'s are iid across $(i,j)$ and $X_{11}$ is bounded. We also establish near$-n^{-\kappa/2}$ Berry-Esseen rate for $T_n$ in high dimension under the existence of $(2+\kappa)$th absolute moments of $X_{ij}$ for $0< \kappa \leq 1$. When $\kappa =1$, the obtained Berry-Esseen rate is also shown to be optimal. As an application, we find respective versions for component-wise Student's t-statistic, which may be useful in high dimensional statistical inference.
翻译:在此文章中, 我们感兴趣的是 $2 的高度正常水平 $( =sum ⁇ i=1美元) =Big( =sqrt=1 ⁇ n}X) /\Big( =1 ⁇ i1 ⁇ 2 ⁇ Big) /\Big( =ssqrt=1 ⁇ n}X) 美元( massal=xcal=1美元) =x( =xcal=美元 美元) =xx( =美元) =xx( 美元) =xx( =美元) =xx( 美元) =xx( 美元) =( 美元) =xx( 美元) =( 美元) =美元( =美元) =( =美元) =( =美元) =( 美元) =( 美元) =( =( 美元) =( 美元) =( =( 美元) =( 美元) =( 美元) =( 美元) 美元) =( =( 美元) =( 美元) 美元) =( 美元) =(美元) =(