It is often necessary to introduce the main characteristics of population mobility dynamics to model critical social phenomena such as the economy, violence, transmission of information, or infectious diseases. In this work, we focus on modeling and inferring urban population mobility using the geospatial data of its inhabitants. The objective is to estimate mobility and times inhabitants spend in the areas of interest, such as zip codes and census geographical areas. The proposed method uses the Brownian bridge model for animal movement in ecology. We illustrate its possible applications using mobile phone GPS data in 2020 from the city of Hermosillo, Sonora, in Mexico. We incorporate the estimated residence-mobility matrix into a multi-patch compartmental SEIR model to assess the effect of mobility changes due to governmental interventions
翻译:通常有必要介绍人口流动动态的主要特征,以模拟经济、暴力、信息传播或传染病等重要社会现象。在这项工作中,我们侧重于利用城市居民的地理空间数据,对城市人口流动进行模型和推断。目标是估计流动性和居民在感兴趣的领域,如拉链码和人口普查地理区的支出时间。拟议方法在生态中采用布朗桥模式进行动物流动。我们用墨西哥索诺拉州索诺拉州埃莫西略市2020年移动电话全球定位系统数据说明其可能的应用。我们将估计的居住流动矩阵纳入多档区间SEIR模型,以评估因政府干预而导致的流动变化的影响。