When solving differential equations by a spectral method, it is often convenient to shift from Chebyshev polynomials $T_{n}(x)$ with coefficients $a_{n}$ to modified basis functions that incorporate the boundary conditions. For homogeneous Dirichlet boundary conditions, $u(\pm 1)=0$, popular choices include the ``Chebyshev difference basis", $\varsigma_{n}(x) \equiv T_{n+2}(x) - T_{n}(x)$ with coefficients here denoted $b_{n}$ and the ``quadratic-factor basis functions" $\varrho_{n}(x) \equiv (1-x^{2}) T_{n}(x)$ with coefficients $c_{n}$. If $u(x)$ is weakly singular at the boundaries, then $a_{n}$ will decrease proportionally to $\mathcal{O}(A(n)/n^{\kappa})$ for some positive constant $\kappa$, where the $A(n)$ is a logarithm or a constant. We prove that the Chebyshev difference coefficients $b_{n}$ decrease more slowly by a factor of $1/n$ while the quadratic-factor coefficients $c_{n}$ decrease more slowly still as $\mathcal{O}(A(n)/n^{\kappa-2})$. The error for the unconstrained Chebyshev series, truncated at degree $n=N$, is $\mathcal{O}(|A(N)|/N^{\kappa})$ in the interior, but is worse by one power of $N$ in narrow boundary layers near each of the endpoints. Despite having nearly identical error \emph{norms}, the error in the Chebyshev basis is concentrated in boundary layers near both endpoints, whereas the error in the quadratic-factor and difference basis sets is nearly uniform oscillations over the entire interval in $x$. Meanwhile, for Chebyshev polynomials and the quadratic-factor basis, the value of the derivatives at the endpoints is $\mathcal{O}(N^{2})$, but only $\mathcal{O}(N)$ for the difference basis.


翻译:当用光谱方法解析差异方程式时,通常方便地从 Chebyshev 多边差价 $T ⁇ n}(x) 美元,以内含边界条件的系数 $axx) 转换为修改基函数。对于平质的 Dirichlet 边界条件, $u(pm) =0, 流行的选择包括 CHebyshev 差价基值 $, $(x) 美元+2} (x) 平面 T ⁇ n+} (x) (x) 美元, 以内含基值 美元, 内含基值 美元, 内含基值比内基值(x) 内基值比内基值低, 内基值比内基值比内基值低。

0
下载
关闭预览

相关内容

切比雪夫多项式是以俄国著名数学家切比雪夫(Tschebyscheff,又译契贝雪夫等,1821一1894)的名字命名的重要的特殊函数,第一类切比雪夫多项式Tn和第二类切比雪夫多项式Un(简称切比雪夫多项式)。源起于多倍角的余弦函数和正弦函数的展开式,是与棣美弗定理有关、以递归方式定义的多项式序列,是计算数学中的一类特殊函数,对于注入连续函数逼近问题,阻抗变换问题等等的数学、物理学、技术科学中的近似计算有着非常重要的作用。
专知会员服务
50+阅读 · 2020年12月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员