Quadruped locomotion is currently a vibrant research area, which has reached a level of maturity and performance that enables some of the most advanced real-world applications with autonomous quadruped robots both in academia and industry. Blind robust quadruped locomotion has been pushed forward in control and technology aspects within recent decades. However, in the complicated environment, the capability including terrain perception and path planning is still required. Visual perception is an indispensable ability in legged locomotion for such a demand. This study explores a vision-based navigation method for a small-scale quadruped robot Pegasus-Mini, aiming to propose a method that enables efficient and reliable navigation for the small-scale quadruped locomotion. The vision-based navigation method proposed in this study is applicable in such a small-scale quadruped robot platform in which the computation resources and space are limited. The semantic segmentation based on a CNN model is adopted for the real-time path segmentation in the outdoor environment. The desired traverse trajectory is generated through real-time updating the middle line, which is calculated from the edge position of the segmented path in the images. To enhance the stability of the path planning directly based on the semantic segmentation method, a trajectory compensation method is supplemented considering the temporal information to revise the untrustworthy planned path. Experiments of semantic segmentation and navigation in a garden scene are demonstrated to verify the effectiveness of the proposed method.


翻译:四重悬浮轨道目前是一个充满活力的研究领域,它已经达到成熟度和性能水平,使学术界和行业中一些最先进的现实世界应用中具有自主四重机器人的自主四重机器人得以应用。近几十年来,在控制和技术方面推进了三重失明运动。然而,在复杂的环境中,仍然需要具备包括地形感知和路径规划在内的能力。视觉感知是满足这种需求的腿动动中不可或缺的能力。这项研究探索了小型四重机械Pegasus-Mini的基于愿景的导航方法,目的是提出一种能够使小规模四重机械机器人高效可靠导航的方法。本研究中提议的基于愿景的导航方法适用于一个小型四重机器人平台,该平台的计算资源和空间都受到限制。基于CNN模型的语义分解在户外环境中实时路路路段分解中采用。理想的轨迹轨迹通过实时更新中线产生,而中线是从分流轨道路段的边缘进行高效和可靠的导航。该轨道路段的计算是从分流路段路段路段的边缘进行直接计算,以稳定路段平整路段路段平的平整,考虑修正方法的平整。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
8+阅读 · 2021年11月14日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员