Kidney exchange programs (KEP's) represent an additional possibility of transplant for patients suffering from end stage kidney disease. If a patient has a willing living donor with whom the patient is not compatible, the pair patient--donor can join a pool of incompatible pairs and, if compatibility between patient and donor in two our more pairs exists, organs can be exchanged between them. The problem can be modeled as an integer program that, in general, aims at finding the pairs that should be selected for transplant such that maximum number of transplants is performed. In this paper we consider that for each patient there may exist a preference order over the organs that he/she can receive, since a patient may be compatible with several donors but may have a better fit over some than over others. Under this setting, the aim is to find the maximum cardinality stable exchange, a solution where no blocking cycle exists. For this purpose we propose three novel integer programming models based on the well-known edge and cycle formulations. These formulations are adjusted for both finding stable and strongly stable exchanges under strict preferences and for the case when ties in preferences may exist. Furthermore, we study a situation when the stability requirement can be relaxed by addressing the trade-off between maximum cardinality versus number of blocking cycles allowed in a solution. The effectiveness of the proposed models is assessed through extensive computational experiments on a wide set of instances.


翻译:肾脏交换方案(KEP)代表了移植肾脏末期疾病患者的额外可能性。如果病人有一个愿意的活捐赠者,而病人与该病人不相容,那么对病人和捐赠者可以加入不兼容的一对,如果病人和捐献者在另外两对中的兼容性存在,则器官可以相互交换。问题可以模拟成一个整数方案,一般地说,其目的是寻找应选择的对口进行移植的对口,以便进行最大数量的移植。在这份文件中,我们认为,每个病人都可能有优待他/她可以接受的器官的订单,因为病人可能与几个捐赠者兼容,但可能比其他病人更适合。在这一背景下,目标是找到最大程度的基点稳定交换,在没有阻塞循环的情况下找到一种解决办法。为此,我们建议三个新的整数组合方案模式。这些公式经过调整,以在严格的优惠下找到稳定和牢固稳定的交换,并在可能存在优惠关系的情况下找到案件。此外,我们研究一个在最广泛的贸易周期和最广泛的试验周期中,可以灵活地评估一种稳定性模式。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年2月9日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员