We determine the computational complexity of approximately counting and sampling independent sets of a given size in bounded-degree graphs. That is, we identify a critical density $\alpha_c(\Delta)$ and provide (i) for $\alpha < \alpha_c(\Delta)$ randomized polynomial-time algorithms for approximately sampling and counting independent sets of given size at most $\alpha n$ in $n$-vertex graphs of maximum degree $\Delta$; and (ii) a proof that unless NP=RP, no such algorithms exist for $\alpha>\alpha_c(\Delta)$. The critical density is the occupancy fraction of hard core model on the clique $K_{\Delta+1}$ at the uniqueness threshold on the infinite $\Delta$-regular tree, giving $\alpha_c(\Delta)\sim\frac{e}{1+e}\frac{1}{\Delta}$ as $\Delta\to\infty$.
翻译:我们确定在约束度图形中大约计算和取样某一尺寸独立数组的计算复杂性。 也就是说, 我们确定一个临界密度$\ alpha_c(\ Delta)$, 并提供 (一) ALpha <\ alpha_c(\ Delta)$ 随机的多元时段算法, 用于在最大度为$\ alpha n$n美元( Delta) 的顶端图中大约取样和计算特定尺寸独立数组, 以美元计算; 以及 (二) 证明, 除非 NP=RP, $\ alpha_ alpha_ c(\ Delta) 不存在这种关键密度。 关键密度是 clicque $K\ delta+1} 硬核心模型在无限值为$delta_ c( Delta)\\\ lefty 树的独特性阈值值值值的占用部分, 以$\ alpha_ c( Delta)\\\\\ e1+e\ aferta} 美元作为美元。