We propose a novel preconditioned inexact primal-dual interior point method for constrained convex quadratic programming problems. The algorithm we describe invokes the preconditioned conjugate gradient method on a new reduced Schur complement KKT system, in implicit form. In contrast to standard approaches, the Schur complement formulation we consider enables reuse of the factorization of the KKT matrix with rows and columns corresponding to inequality constraints excluded, across all interior point iterations. Further, two new preconditioners are presented for the resulting reduced system, that alleviate the ill-conditioning associated with slack variables in primal-dual interior point methods. Each of the preconditioners we propose also provably reduces the number of unique eigenvalues for the coefficient matrix, and thus the CG iteration count. One preconditioner is efficient when the number of equality constraints is small, while the other is efficient when the number of remaining degrees of freedom is small. Numerical experiments with synthetic problems and problems from the Maros-M\'esz\'aros QP collection show that our preconditioned inexact interior point solvers are effective at improving conditioning and reducing cost. Across all test problems for which the direct method is not fastest, our preconditioned methods achieve a reduction in cost by a geometric mean of $1.432$ relative to the best alternative preconditioned method for each problem.
翻译:我们提出了一种新颖的、具有超前初初等内分点的内分点方法,用于解决受限制的锥形二次编程问题。我们所描述的算法在一个新的降低的Schur 补充 KKT系统上以隐含的形式援引了先决条件的同化梯度方法。与标准方法相反,我们认为Schur 补充配方能够使KKT矩阵的因子再利用,与所有内分点都排除的不平等限制相对应的行数和列数相适应。此外,还提出了两个新的先决条件,用于减少系统,从而缓解与原始二分点方法中疲软变数有关的不适的调节。我们提议的每个先决条件也以可预见的方式减少了系数矩阵中独有的艾基因值数量,从而也减少了CG输值计数。一个先决条件是有效的,因为平等限制的数量很小,而其余的自由程度则较小。对马罗斯-M\'esz\aroaro的合成问题和问题作了两次新的预设性实验,这说明我们所预设的内分点的替代价格的解方法都是降低成本的每个最高标准。