Although mobile phones incorporate low-cost vibration motors to enhance touch-based interactions, it is not possible to generate complex tactile effects on their touchscreens. It is also difficult to relate the limited vibrotactile feedback generated by these motors to different types of physical buttons. In this study, we focus on creating vibrotactile feedback on a touchscreen that simulates the feeling of physical buttons using piezo actuators attached to it. We first recorded and analyzed the force, acceleration, and voltage data from twelve participants interacting with three different physical buttons: latch, toggle, and push buttons. Then, a button-specific vibrotactile stimulus was generated for each button based on the recorded data. Finally, we conducted a threealternative forced choice (3AFC) experiment with twenty participants to explore whether the resultant stimulus is distinct and realistic. In our experiment, participants were able to match the three digital buttons with their physical counterparts with a success rate of 83%. In addition, we harvested seven adjective pairs from the participants expressing their perceptual feeling of pressing the physical buttons. All twenty participants rated the degree of their subjective feelings associated with each adjective for all the physical and digital buttons investigated in this study. Our statistical analysis showed that there exist at least three adjective pairs for which participants have rated two out of three digital buttons similar to their physical counterparts.


翻译:虽然移动电话中含有低成本振动动动脉,以加强触摸性互动,但无法在触摸屏上产生复杂的触动效果。 也很难将这些马达产生的有限的振动性反应与不同类型的物理按钮联系起来。 在本研究中, 我们侧重于在触摸屏上创建振动性反应, 以模拟物理按钮的感觉, 并使用附着的派形动动动器。 我们首先记录并分析了十二位参与者与三个不同的物理按钮互动的力、加速和电压数据: 滑动、 切换和按按钮。 然后, 根据所记录的数据, 每个按钮都生成了针对按钮的振动性活性刺激。 最后, 我们与20名参与者进行了三次替代性强制选择( 3AFC) 实验, 以探究结果刺激是否独特和现实。 在我们的实验中, 参与者能够将三个数字按钮与实际对等匹配83%的成功率。 此外, 我们从参与者那里收集了七个形容配对, 表达自己对物理按钮的感知觉觉觉觉感的组合。 所有20名参与者都将这三度定了他们身上的直位, 。 都将这三位的统计式的对上, 。

0
下载
关闭预览

相关内容

Feel,是一款科学地激励用户实现健康生活目标的应用。 想要减肥,塑形,增高,提升活力,睡个好觉,产后恢复……?针对不同的目标,Feel为您定制个性化的健康生活计划,并通过各种记录工具和激励手段帮您实现目标。
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
39+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
已删除
架构文摘
3+阅读 · 2019年4月17日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
Arxiv
0+阅读 · 2021年5月25日
Arxiv
0+阅读 · 2021年5月24日
Arxiv
0+阅读 · 2021年5月22日
Arxiv
0+阅读 · 2021年5月21日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
39+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
已删除
架构文摘
3+阅读 · 2019年4月17日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
Top
微信扫码咨询专知VIP会员