The computer-assisted radiologic informative report is currently emerging in dental practice to facilitate dental care and reduce time consumption in manual panoramic radiographic interpretation. However, the amount of dental radiographs for training is very limited, particularly from the point of view of deep learning. This study aims to utilize recent self-supervised learning methods like SimMIM and UM-MAE to increase the model efficiency and understanding of the limited number of dental radiographs. We use the Swin Transformer for teeth numbering, detection of dental restorations, and instance segmentation tasks. To the best of our knowledge, this is the first study that applied self-supervised learning methods to Swin Transformer on dental panoramic radiographs. Our results show that the SimMIM method obtained the highest performance of 90.4% and 88.9% on detecting teeth and dental restorations and instance segmentation, respectively, increasing the average precision by 13.4 and 12.8 over the random initialization baseline. Moreover, we augment and correct the existing dataset of panoramic radiographs. The code and the dataset are available at https://github.com/AmaniHAlmalki/DentalMIM.


翻译:计算机辅助放射信息报告目前正在牙科实践中出现,以便利牙科护理和减少人工全射线解释的时间消耗,但是,用于培训的牙科放射量非常有限,特别是从深层学习的角度来看,这一研究的目的是利用最近自我监督的学习方法,如SimMIM和UM-MAE,提高模型效率和对数量有限的牙科放射线的了解,我们使用双向变换器进行牙齿编号、检测牙科修复和例谱分割任务。据我们所知,这是在牙科全射线上对Swin Terverer应用自我监督学习方法的第一项研究。我们的结果显示,SimMIM方法在检测牙齿和牙齿修复及实例分解方面分别取得了90.4%和88.9%的最高性能,使平均精确度比随机初始化基线提高13.4和12.8。此外,我们增加和纠正了现有的全景射线图数据集。代码和数据集见https://githrub.com/AmaniHal。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
14+阅读 · 2021年8月5日
Anomalous Instance Detection in Deep Learning: A Survey
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员