In genome rearrangements, the mutational event transposition swaps two adjacent blocks of genes in one chromosome. The Transposition Distance Problem (TDP) aims to find the minimum number of transpositions required to transform one chromosome into another, both represented as permutations. The TDP can be reduced to the problem of Sorting by Transpositions (SBT). SBT is $\mathcal{NP}$-hard and the best approximation algorithm with a $1.375$ ratio was proposed by Elias and Hartman. Their algorithm employs simplification, a technique used to transform an input permutation $\pi$ into a simple permutation $\hat{\pi}$, presumably easier to handle with. The permutation $\hat{\pi}$ is obtained by inserting new symbols into $\pi$ in a way that the lower bound of the transposition distance of $\pi$ is kept on $\hat{\pi}$. The simplification is guaranteed to keep the lower bound, not the transposition distance. In this paper, we first show that the algorithm of Elias and Hartman (EH algorithm) may require one extra transposition above the approximation ratio of $1.375$, depending on how the input permutation is simplified. Next, using an algebraic approach, we propose a new upper bound for the transposition distance and a new $1.375$-approximation algorithm to solve SBT skipping simplification and ensuring the approximation ratio of $1.375$ for all $S_n$. We implemented our algorithm and EH's. Regarding the implementation of the EH algorithm, two issues needed to be fixed. We tested both algorithms against all permutations of size $n$, $2\leq n \leq 12$. The results show that the EH algorithm exceeds the approximation ratio of $1.375$ for permutations with a size greater than $7$. Finally, we investigate the performance of both implementations on longer permutations of maximum length $500$.


翻译:在基因组重组中,突变事件变异变异变换将两个相邻的基因区块换成一个染色体。 变异远程问题( TDP) 的目的是找到将一个染色体转换成另一个染色体所需的最起码变异数, 两者均以变异形式表示。 TDP可以降低为通过变异变异( SBT) 排序问题。 SBT 美元是 $\ mathcal{NP} 硬值, 最佳近似算法由埃利亚斯和哈特曼提出, 比例为1.375美元。 他们的算法使用简化, 将一个输入的变异化 美元转换成简单的变异性( $hhat_pi), 估计更容易处理。 将新变异异性变的变异性变异性( 美元) 以美元变异变异性计算, 我们的变异性算法将比新变异性变异的变异性算法 。 我们的变异性算算法将比新变异性变异性变异性变的变异性变异性变异性算法要多一个 。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年12月27日
Arxiv
0+阅读 · 2021年12月26日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员