In the Bin Packing problem one is given $n$ items with weights $w_1,\ldots,w_n$ and $m$ bins with capacities $c_1,\ldots,c_m$. The goal is to find a partition of the items into sets $S_1,\ldots,S_m$ such that $w(S_j) \leq c_j$ for every bin $j$, where $w(X)$ denotes $\sum_{i \in X}w_i$. Bj\"orklund, Husfeldt and Koivisto (SICOMP 2009) presented an $\mathcal{O}^\star(2^n)$ time algorithm for Bin Packing. In this paper, we show that for every $m \in \mathbf{N}$ there exists a constant $\sigma_m >0$ such that an instance of Bin Packing with $m$ bins can be solved in $\mathcal{O}(2^{(1-\sigma_m)n})$ randomized time. Before our work, such improved algorithms were not known even for $m$ equals $4$. A key step in our approach is the following new result in Littlewood-Offord theory on the additive combinatorics of subset sums: For every $\delta >0$ there exists an $\varepsilon >0$ such that if $|\{ X\subseteq \{1,\ldots,n \} : w(X)=v \}| \geq 2^{(1-\varepsilon)n}$ for some $v$ then $|\{ w(X): X \subseteq \{1,\ldots,n\} \}|\leq 2^{\delta n}$.
翻译:在 Bin 包装问题中, 给一个以美元计重的项目 $w_ 1,\ ldots, w_n美元 和 $m美元 。 目标在于找到一个项目分区, 设置 $S_ 1,\ ldots, S_ m$, 这样每张便能给$w( j)\leq c_ j$, $w( X) 表示 $sum_ i_ in X} w_ 美元 美元 。 Bj\ “ orklund, Husfeldt 和 Koivisto ( SIP 2009) 提供了美元=mathcal{O# star( 2 ⁇ n) 美元的时间算法 。 在本文中, 每一份美元 美元=qm@ qrq_ m@% 美元 美元 美元, 其中, 美元=% =% =% = = brickral_ 美元, rolex_ a legal_ roup legal1, roup $1, =x_ lex_x_x__ lexl_ lex_x_ lex_x__xxxxx__xxxxl_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx