Effective characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in diffusion MRI (dMRI). Solving the problem of relating the dMRI signal with cytoarchitectural characteristics calls for the definition of a mathematical model that describes brain tissue via a handful of physiologically-relevant parameters and an algorithm for inverting the model. To address this issue, we propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells. We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model. As opposed to other approaches from the literature, our algorithm yields not only an estimation of the parameter vector $\theta$ that best describes a given observed data point $x_0$, but also a full posterior distribution $p(\theta|x_0)$ over the parameter space. This enables a richer description of the model inversion, providing indicators such as credible intervals for the estimated parameters and a complete characterization of the parameter regions where the model may present indeterminacies. We approximate the posterior distribution using deep neural density estimators, known as normalizing flows, and fit them using a set of repeated simulations from the forward model. We validate our approach on simulations using dmipy and then apply the whole pipeline on two publicly available datasets.
翻译:大脑灰色物质细胞结构的有效特性,在数量上敏感于沙发密度和体积的大脑灰质细胞结构的有效特性,在传播MRI(dMRI)方面仍然是一个尚未解决的挑战。解决将 dMRI 信号与细胞结构特征联系起来的问题,要求界定一个数学模型,该模型通过少数与生理有关的参数来描述脑组织,并用算法来推翻模型。为了解决这个问题,我们提出了一个新的前方程模型,特别是一个新的方程系统,需要少许稀薄的贝壳。我们然后运用巴伊西亚分析的现代工具来推翻我们提议的模型。相对于文献中的其他方法,我们的算法不仅估算参数矢量值$\theta$,最能描述特定观测到的数据点$x_0美元,而且要用一个完整的后方位分布。这样就可以更详细地描述模型的转换,为估算参数的可靠间隔提供指标,并用我们已知的常态前方程数据流来完整地分析,使用我们所知道的常态的常态数据流进行我们目前所知道的常态的常态的常态的常态变校准。