Increasing design complexity and reduced time-to-market have motivated manufacturers to outsource some parts of the System-on-Chip (SoC) design flow to third-party vendors. This provides an opportunity for attackers to introduce hardware Trojans by constructing stealthy triggers consisting of rare events (e.g., rare signals, states, and transitions). There are promising test generation-based hardware Trojan detection techniques that rely on the activation of rare events. In this paper, we investigate rareness reduction as a design-for-trust solution to make it harder for an adversary to hide Trojans (easier for Trojan detection). Specifically, we analyze different avenues to reduce the potential rare trigger cases, including design diversity and area optimization. While there is a good understanding of the relationship between area, power, energy, and performance, this research provides a better insight into the dependency between area and security. Our experimental evaluation demonstrates that area reduction leads to a reduction in rareness. It also reveals that reducing rareness leads to faster Trojan detection as well as improved coverage by Trojan detection methods.


翻译:设计日益复杂,时间到市场的减少,促使制造商将芯片系统设计流程的某些部分外包给第三方供应商。这为攻击者提供了一个机会,通过建造由稀有事件(例如稀有信号、状态和过渡)组成的隐形触发器,引进硬特洛伊木马。有希望的基于代试的硬件特洛伊探测技术依赖于稀有事件的启动。在本文中,我们把稀有性减少作为一种设计托拉斯解决方案,使对手更难隐藏特洛伊(Trojan探测的易易)。具体地说,我们分析了减少潜在稀有触发病例的不同途径,包括设计多样性和地区优化。虽然对地区、电力、能源和性能之间的关系有很好的了解,但这一研究提供了对地区与安全之间依赖关系的更好了解。我们的实验评估表明,减少稀有性导致稀有性减少。它还表明,减少稀有性会导致更快地探测特洛伊,以及改进特洛伊探测方法的覆盖范围。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
24+阅读 · 2020年3月11日
Arxiv
11+阅读 · 2019年4月15日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员