Based on the Sinc approximation combined with the tanh transformation, Haber derived an approximation formula for numerical indefinite integration over the finite interval (-1, 1). The formula, (SE1) uses a special function for the basis functions. In contrast, Stenger derived another formula (SE2), which does not use any special function but does include a double sum. Subsequently, Muhammad and Mori proposed the formula (DE1), which replaces the tanh transformation with the double-exponential transformation in the formula (SE1). Almost simultaneously, Tanaka et al. proposed the formula (DE2), which was based on the same replacement in (SE2). As they reported, the replacement drastically improves the convergence rate of (SE1) and (SE2). In addition to the formulas above, Stenger derived yet another indefinite integration formula (SE3) based on the Sinc approximation combined with the tanh transformation, which has an elegant matrix-vector form. In this paper, we propose the replacement of the tanh transformation with the double-exponential transformation in the formula (SE3). We provide a theoretical analysis as well as a numerical comparison.


翻译:根据Sinc近似值加上Tanh变异,Haber得出了一个在有限间隔(-1,1)内进行数字无限期合并的近似公式(SE1),公式(SE1)对基础函数使用一种特殊函数。相反,Senger得出另一种公式(SE2),该公式不使用任何特殊函数,但确实包含一个双重总和。随后,Muhammad和Mori提出了公式(DE1),该公式用公式(SE1)中的双重利用变异(SE1)取代Tanh变异(DE2)。Tana等人几乎同时提出了公式(DE2),该公式以(SE2)中的同一替换为基础。正如他们所报告的那样,该替换大大提高了(SE1)和(SE2)的合并率。除上述公式外,Stenger还根据Sinc 近似值和Tranh变异形(SE3)得出了另一种不定期合并公式(SE3),该公式具有一种优雅的矩阵-矢量表。在本文件中,我们提议用公式(SE3)的双重变异变变换,我们提供理论分析和数字比较。我们提供理论分析和数字比较。

0
下载
关闭预览

相关内容

Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员