In real life, we frequently come across data sets that involve some independent explanatory variable(s) generating a set of ordinal responses. These ordinal responses may correspond to an underlying continuous latent variable, which is linearly related to the covariate(s), and takes a particular (ordinal) label depending on whether this latent variable takes value in some suitable interval specified by a pair of (unknown) cut-offs. The most efficient way of estimating the unknown parameters (i.e., the regression coefficients and the cut-offs) is the method of maximum likelihood (ML). However, contamination in the data set either in the form of misspecification of ordinal responses, or the unboundedness of the covariate(s), might destabilize the likelihood function to a great extent where the ML based methodology might lead to completely unreliable inferences. In this paper, we explore a minimum distance estimation procedure based on the popular density power divergence (DPD) to yield robust parameter estimates for the ordinal response model. This paper highlights how the resulting estimator, namely the minimum DPD estimator (MDPDE), can be used as a practical robust alternative to the classical procedures based on the ML. We rigorously develop several theoretical properties of this estimator, and provide extensive simulations to substantiate the theory developed.
翻译:在现实生活中,我们经常看到涉及产生一套正态反应的独立的解释变量的数据集。这些正态反应可能对应一个潜在的潜在潜在潜在变量,这种潜在变量与共变(s)有线性联系,并采用特定(ordinal)标签,取决于该潜在变量是否在一对(未知的)截断点规定的某个适当间隔内获得价值。估计未知参数(即回归系数和截断值)的最有效方式是最大可能性的方法(ML)。然而,数据集中的污染可能与一个潜在的连续潜在变量相对应,这种潜在变量可能与共变(s)有线性联系,而且根据该潜在变量的方法可能导致完全不可靠的推论。在本文中,我们探索一个基于广受欢迎的密度差(DPD)来得出稳健的参数估计程序。本文着重说明了由此产生的估算方法,即最低限度的DPD估测点反应,或未受约束的共变异性(MDPDE),可能会在很大程度上破坏这一可能性功能,因为基于MDSimalimal的模型(MDPDE),我们将大量地用作一个扎实的模型。