In this work, we propose a convolutional neural network (CNN) based low-complexity approach for downlink (DL) channel estimation (CE) in frequency division duplex (FDD) systems. In contrast to existing work, we use training data which solely stems from the uplink (UL) domain. This allows us to learn the CNN centralized at the base station (BS). After training, the network parameters are offloaded to mobile terminals (MTs) within the coverage area of the BS. The MTs can then obtain channel state information (CSI) of the MIMO channels with the low-complexity CNN estimator. This circumvents the necessity of an infeasible amount of feedback, the acquisition of training data at the user, and the offline training phase at each MT. Numerical results show that the CNN which is trained solely on UL data performs equally well as the network trained on DL data. Furthermore, the approach is able to outperform state-of-the-art CE algorithms.
翻译:在这项工作中,我们建议对频率分部(FDD)系统中的下行链路(DL)频道估计(CE)采用基于动态神经网络(CNN)的低复杂度方法。与现有的工作不同,我们使用完全来自上行(UL)域的培训数据。这使我们能够在基地站(BS)学习CNN中央控制。培训后,网络参数被卸载到BS覆盖区内的流动终端(MTs)。然后,MTs可以与低兼容CNN估计器获得MIMO频道的频道状态信息(CSI)。这避免了不切实际的反馈、用户获取培训数据以及每个MT的离线培训阶段的必要性。数字结果显示,仅接受UL数据培训的CNN的运行与DL数据培训的网络运行相同。此外,该方法能够超越最先进的CE算法。