In this paper, we address the problem of privacy-preserving distributed learning and the evaluation of machine-learning models by analyzing it in the widespread MapReduce abstraction that we extend with privacy constraints. We design SPINDLE (Scalable Privacy-preservINg Distributed LEarning), the first distributed and privacy-preserving system that covers the complete ML workflow by enabling the execution of a cooperative gradient-descent and the evaluation of the obtained model and by preserving data and model confidentiality in a passive-adversary model with up to N-1 colluding parties. SPINDLE uses multiparty homomorphic encryption to execute parallel high-depth computations on encrypted data without significant overhead. We instantiate SPINDLE for the training and evaluation of generalized linear models on distributed datasets and show that it is able to accurately (on par with non-secure centrally-trained models) and efficiently (due to a multi-level parallelization of the computations) train models that require a high number of iterations on large input data with thousands of features, distributed among hundreds of data providers. For instance, it trains a logistic-regression model on a dataset of one million samples with 32 features distributed among 160 data providers in less than three minutes.
翻译:在本文中,我们处理保护隐私的分布式学习和评价机读模型的问题,方法是在广泛分布的地图中分析我们随隐私限制而扩展的图像,从而在广泛的地图中分析它,从而解决保护隐私的分布式学习和评价机器学习模型的问题。我们设计了SPINDLE(可扩缩的隐私-preserving分布式Learning),这是第一个分布式和隐私保护系统,它覆盖了完整的 ML工作流程,它使合作的梯度日光度和评估获得的模型成为可能,并保持了数据和模型的保密性,在无N-1串联方的被动式模型中保存了数据和模型的保密性。SPINDLE使用多式同式加密对加密数据进行平行的高深度计算,而没有显著的顶端。我们即时将SPINDLE用于对分布式数据集的通用线性模型的培训和评价,并表明它能够准确(与非安全的中央培训的模型相当)和高效率地(由于计算方法的多层次平行化),对具有数千个特征的大型输入数据数据数据数据数据进行大量重复的模型,在数百个数据提供者之间进行分配。例如,在三百万个数据提供者之间,在三百万个分布式的模型上进行后勤-160式模型的模型上进行。