We introduce a novel paradigm that simplifies the visualization and analysis of data that have a spatially/temporally varying frame of reference. The primary application driver is tokamak fusion plasma, where science variables (e.g., density and temperature) are interpolated in a complex magnetic field-line-following coordinate system. We also see a similar challenge in rotational fluid mechanics, cosmology, and Lagrangian ocean analysis; such physics implies a deforming spacetime and induces high complexity in volume rendering, isosurfacing, and feature tracking, among various visualization tasks. Without loss of generality, this paper proposes an algorithm to build a simplicial complex -- a tetrahedral mesh, for the deforming 3D spacetime derived from two 2D triangular meshes representing consecutive timesteps. Without introducing new nodes, the resulting mesh fills the gap between 2D meshes with tetrahedral cells while satisfying given constraints on how nodes connect between the two input meshes. In the algorithm we first divide the spacetime into smaller partitions to reduce complexity based on the input geometries and constraints. We then independently search for a feasible tessellation of each partition taking nonconvexity into consideration. We demonstrate multiple use cases for a simplified visualization analysis scheme with a synthetic case and fusion plasma applications.
翻译:暂无翻译