We present a Gibbs sampler for the Dempster-Shafer (DS) approach to statistical inference for Categorical distributions. The DS framework extends the Bayesian approach, allows in particular the use of partial prior information, and yields three-valued uncertainty assessments representing probabilities "for", "against", and "don't know" about formal assertions of interest. The proposed algorithm targets the distribution of a class of random convex polytopes which encapsulate the DS inference. The sampler relies on an equivalence between the iterative constraints of the vertex configuration and the non-negativity of cycles in a fully connected directed graph. Illustrations include the testing of independence in 2x2 contingency tables and parameter estimation of the linkage model.
翻译:我们为Dempster-Shafer (DS) 提出了一个 Gibbs 样本,用于计算分类分布的统计推论方法。 DS 框架扩展了巴伊西亚方法,特别允许使用部分先前信息,并产生三价不确定性评估,代表“为”、“为”、“为”、“为”和“为”正式表示兴趣而“不知道”的概率。提议的算法的目标是分配一组随机的 convex 多元台式,它包含DS 推论。 取样器依赖于顶端配置的迭接性制约与完全相连的定向图中循环的非惯性之间的等值。 说明包括测试2x2 应急表的独立性和对联系模型的参数估计。