The use of non-differentiable priors in Bayesian statistics has become increasingly popular, in particular in Bayesian imaging analysis. Current state of the art methods are approximate in the sense that they replace the posterior with a smooth approximation via Moreau-Yosida envelopes, and apply gradient-based discretized diffusions to sample from the resulting distribution. We characterize the error of the Moreau-Yosida approximation and propose a novel implementation using underdamped Langevin dynamics. In misson-critical cases, however, replacing the posterior with an approximation may not be a viable option. Instead, we show that Piecewise-Deterministic Markov Processes (PDMP) can be utilized for exact posterior inference from distributions satisfying almost everywhere differentiability. Furthermore, in contrast with diffusion-based methods, the suggested PDMP-based samplers place no assumptions on the prior shape, nor require access to a computationally cheap proximal operator, and consequently have a much broader scope of application. Through detailed numerical examples, including a non-differentiable circular distribution and a non-convex genomics model, we elucidate the relative strengths of these sampling methods on problems of moderate to high dimensions, underlining the benefits of PDMP-based methods when accurate sampling is decisive.
翻译:Bayesian统计中使用非差别的前题越来越受欢迎,特别是在Bayesian成像分析中,特别是Bayesian成像分析中使用非差别化的前题越来越受欢迎。目前的最新方法是近似于近似的方法,即它们通过Moreau-Yosida 信封以平稳近似取代后端,并将基于梯度的分散散射用于由此而来的分布样本。我们用Moreau-Yosida近似误差来辨别Moreau-Yosida近似差,并提议使用未得到充分标注的Langevin动态进行新颖的实施。然而,在暗中临界情况中,用近似不可行。相反,我们表明,从几乎满足各地不同分布的分布中精确地推断出后端。此外,与基于扩散方法相比,建议的基于PDMP的采样器并不假定先前的形状,也不要求使用一个计算低廉的准准度操作者,因此应用范围要大得多。我们通过详细的数字实例,包括一个不可区别的循环分布和不精度的马可测的马索非断面马索断面的马多的马索,在抽样模型的模型的模型的高度上,我们用这些方法的确定了这些高比重的方法。