We construct a new class of efficient Monte Carlo methods based on continuous-time piecewise deterministic Markov processes (PDMP) suitable for inference in high dimensional sparse models, i.e. models for which there is prior knowledge that many coordinates are likely to be exactly $0$. This is achieved with the fairly simple idea of endowing existing PDMP samplers with sticky coordinate axes, coordinate planes etc. Upon hitting those subspaces, an event is triggered, during which the process sticks to the subspace, this way spending some time in a sub-model. That introduces non-reversible jumps between different (sub-)models. The approach can also be combined with local implementations of PDMP samplers to target measures that additionally exhibit a sparse dependency structure. We illustrate the new method for a number of statistical models where both the sample size $N$ and the dimensionality $d$ of the parameter space are large.


翻译:我们根据适合高维稀有模型(即以前知道许多坐标可能完全为0美元的模型)推断的连续片段确定式马可夫工艺(PDMP),构建了一个新的高效蒙特卡洛方法类别。通过将现有的PDMP采样器用粘合坐标轴、协调飞机等简单的想法,我们实现了这一点。在击中这些子空间时,触发了一种事件,在这一事件中,过程会粘贴到子空间,从而在子模型中花费一些时间。这引入了不同(次)模型之间不可逆的跳跃。这个方法还可以与PDMP采样器的本地实施结合起来,以针对额外显示稀薄依赖结构的测量措施。我们为一些样本大小为$N美元和参数空间的维度为$d$的统计模型展示了新的方法。

0
下载
关闭预览

相关内容

数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
已删除
将门创投
4+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Local Relation Networks for Image Recognition
Arxiv
4+阅读 · 2019年4月25日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员