Mechanical assemblies can exhibit complex relative motions, during which collisions between moving parts and their surroundings must be avoided. To define feasible design spaces for each part's shape, "maximal" collision-free pointsets can be computed using configuration space modeling techniques such as Minkowski operations and sweep/unsweep. For example, for a pair of parts undergoing a given relative motion, to make the problem well-posed, the geometry of one part (chosen arbitrarily) must be fixed to compute the maximal shape of the other part by an unsweep operation. Making such arbitrary choices in a multi-component assembly can place unnecessary restrictions on the design space. A broader family of collision-free pairs of parts can be explored, if fixing the geometry of a component is not required. In this paper, we formalize this family of collision-free shapes and introduce a generic method for generating a broad subset of them. Our procedure, which is an extension of the unsweep, allows for co-generation of a pair of geometries which are modified incrementally and simultaneously to avoid collision. We demonstrate the effectiveness and scalability of our procedure in both 2D and 3D by generating a variety of collision-free shapes. Notably, we show that our approach can automatically generate freeform cam and follower profiles, gear teeth, and screw threads, starting from colliding blocks of materials, solely from a specification of relative motion and without the use of any feature-informed heuristics. Moreover, our approach provides continuous measures of collision that can be incorporated into standard gradient-descent design optimization, allowing for simultaneous collision-free and physics-informed co-design of mechanical parts for assembly.
翻译:机械组件可以展示复杂的相对运动, 在此期间, 移动部件及其周围环境的碰撞必须避免。 为了定义每个部件形状的可行设计空间, 可以使用配置空间模型技术( 如 Minkowski 操作和扫扫/扫瞄) 来计算“ 最大” 碰撞点。 例如, 对于一个部分的配置空间模型技术( 如 Minkowski 操作和扫/ 扫扫), 使问题得到妥善处理, 一个部分( 任意选择) 的几何方法必须固定, 以便用一个未清除操作来计算另一部分的最大碰撞形状。 在多部件组件组件中做出这种任意选择可以对设计空间施加不必要的限制。 如果不需要修正一个部件的几何形状, 就可以探索一个更宽的无碰撞点组合。 本文中, 将这种无碰撞形状的组合正式化, 并引入一个通用的方法。 我们的程序, 是一个不透析的延伸, 允许一组同步的组合的组合的组合, 能够同时对设计空间空间空间空间空间空间空间空间进行不必要的选择。 我们从自由的、 直径直径的阶结构的特性开始和直径直径直径结构, 。