3D shape abstraction has drawn great interest over the years. Apart from low-level representations such as meshes and voxels, researchers also seek to semantically abstract complex objects with basic geometric primitives. Recent deep learning methods rely heavily on datasets, with limited generality to unseen categories. Furthermore, abstracting an object accurately yet with a small number of primitives still remains a challenge. In this paper, we propose a novel non-parametric Bayesian statistical method to infer an abstraction, consisting of an unknown number of geometric primitives, from a point cloud. We model the generation of points as observations sampled from an infinite mixture of Gaussian Superquadric Taper Models (GSTM). Our approach formulates the abstraction as a clustering problem, in which: 1) each point is assigned to a cluster via the Chinese Restaurant Process (CRP); 2) a primitive representation is optimized for each cluster, and 3) a merging post-process is incorporated to provide a concise representation. We conduct extensive experiments on two datasets. The results indicate that our method outperforms the state-of-the-art in terms of accuracy and is generalizable to various types of objects.
翻译:3D 形状抽象多年来引起了极大的兴趣。 除了诸如 meshes 和 voxels 等低层次的表象外, 研究人员还寻求用基本的几何原始体进行精密的抽象复杂天体。 最近深层的学习方法主要依赖数据集, 其普遍性有限。 此外, 以少量原始体精确地抽取一个天体仍是一个挑战。 在本文中, 我们提出了一个新的非参数贝叶斯统计方法, 以推断抽象, 包括从点云中取出数量未知的几何原始体。 我们用从高山超级二次测深模型( GSTM) 的无限混合体中抽取的观察模型( GSTM) 来模拟点的生成。 我们的方法将抽取作为一种集问题, 其中:1 每一个点通过中国美食程序( CRP) 分配给一个集体组; 2) 每个组群体的原始代表最优化, 3 合并后过程是为了提供一个简明的表达方式。 我们在两个数据集上进行广泛的实验。 结果表明, 我们的方法在精确和一般的类别中, 显示我们的方法超越了状态对象的大小。