Quantum repeater chains can be used to distribute bipartite entanglement among two end nodes. We study the limits of entanglement distribution using a chain of quantum repeaters that have quantum memories. A maximum storage time, known as cutoff, is enforced on these memories to ensure high-quality end-to-end entanglement. To generate end-to-end entanglement, the nodes can perform the following operations: wait, attempt the generation of an elementary entangled link with its neighbor(s), or perform an entanglement swapping measurement. Nodes follow a policy that determines what operation they must perform in each time step. Global-knowledge policies take into account all the information about the entanglement already produced. Here, we find global-knowledge policies that minimize the expected time to produce end-to-end entanglement. We model the evolution of this system as a Markov decision process, and find optimal policies using value and policy iteration. We compare optimal global-knowledge policies to a policy in which nodes only use local information. The advantage in expected delivery time provided by an optimal global-knowledge policy increases with increasing number of nodes and decreasing probability of successful entanglement swap. The advantage displays a non-trivial behavior with respect to the cutoff time and the probability of successful entanglement generation at the elementary link level. Our work sheds light on how to distribute entangled pairs in large quantum networks using a chain of intermediate repeaters with cutoffs.
翻译:量子中继器链可以用来在两个端节点之间分配两端的纠缠。 我们用一系列具有量子存储器的量子中继器来研究纠缠分布的极限。 在这些记忆中强制实施最大存储时间, 称为截断时间, 以确保高质量的端到端的纠缠。 为了产生端到端的纠缠, 节点可以执行以下操作: 等待, 尝试与邻居建立基本缠绕的链接, 或进行纠缠性互换测量。 节点遵循一个政策, 决定它们必须在每一步中间节点中运行的操作。 全球知识政策考虑到所有关于纠缠的信息。 这里, 我们找到全球知识政策, 最大限度地减少预期的时间来产生端到端之间的纠缠。 我们把这一系统的演进模式作为马可夫决策过程的模型, 并使用价值和政策的重复来找到最佳的政策。 我们把最佳全球知识政策与不只使用本地信息的政策进行比较。 全球知识链路的优势在于: 最佳交付时间的优势与最佳递增的概率。