Quantum repeater chains can be used to distribute bipartite entanglement among two end nodes. We study the limits of entanglement distribution using a chain of quantum repeaters that have quantum memories. A maximum storage time, known as cutoff, is enforced on these memories to ensure high-quality end-to-end entanglement. To generate end-to-end entanglement, the nodes can perform the following operations: wait, attempt the generation of an elementary entangled link with its neighbor(s), or perform an entanglement swapping measurement. Nodes follow a policy that determines what operation they must perform in each time step. Global-knowledge policies take into account all the information about the entanglement already produced. Here, we find global-knowledge policies that minimize the expected time to produce end-to-end entanglement. We model the evolution of this system as a Markov decision process, and find optimal policies using value and policy iteration. We compare optimal global-knowledge policies to a policy in which nodes only use local information. The advantage in expected delivery time provided by an optimal global-knowledge policy increases with increasing number of nodes and decreasing probability of successful entanglement swap. The advantage displays a non-trivial behavior with respect to the cutoff time and the probability of successful entanglement generation at the elementary link level. Our work sheds light on how to distribute entangled pairs in large quantum networks using a chain of intermediate repeaters with cutoffs.


翻译:量子中继器链可以用来在两个端节点之间分配两端的纠缠。 我们用一系列具有量子存储器的量子中继器来研究纠缠分布的极限。 在这些记忆中强制实施最大存储时间, 称为截断时间, 以确保高质量的端到端的纠缠。 为了产生端到端的纠缠, 节点可以执行以下操作: 等待, 尝试与邻居建立基本缠绕的链接, 或进行纠缠性互换测量。 节点遵循一个政策, 决定它们必须在每一步中间节点中运行的操作。 全球知识政策考虑到所有关于纠缠的信息。 这里, 我们找到全球知识政策, 最大限度地减少预期的时间来产生端到端之间的纠缠。 我们把这一系统的演进模式作为马可夫决策过程的模型, 并使用价值和政策的重复来找到最佳的政策。 我们把最佳全球知识政策与不只使用本地信息的政策进行比较。 全球知识链路的优势在于: 最佳交付时间的优势与最佳递增的概率。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月12日
Arxiv
0+阅读 · 2022年9月9日
Arxiv
0+阅读 · 2022年9月9日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员