Strict frequentism defines probability as the limiting relative frequency in an infinite sequence. What if the limit does not exist? We present a broader theory, which is applicable also to random phenomena that exhibit diverging relative frequencies. In doing so, we develop a close connection with the theory of imprecise probability: the cluster points of relative frequencies yield an upper probability. We show that a natural frequentist definition of conditional probability recovers the generalized Bayes rule. This also suggests an independence concept, which is related to epistemic irrelevance in the imprecise probability literature. Finally, we prove constructively that, for a finite set of elementary events, there exists a sequence for which the cluster points of relative frequencies coincide with a prespecified set which demonstrates the naturalness, and arguably completeness, of our theory.
翻译:严格常客主义将概率定义为无限序列中的限制相对频率。 如果限制不存在, 则会怎样? 我们提出了一个更广泛的理论, 这个理论也适用于显示不同相对频率的随机现象。 在这样做的时候, 我们发展了与不精确概率理论的密切联系: 相对频率的集聚点产生一个高概率。 我们显示, 有条件概率的自然常客主义定义恢复了普遍流行的贝耶斯规则。 这还意味着一个独立概念, 与不精确概率文献中的相异性相关联。 最后, 我们建设性地证明, 对于一系列有限的基本事件, 存在一个序列, 相对频率的集点与一个预设的集相吻合, 这组点显示了我们理论的自然性, 并且可以说是完整的。