HERMES (High Energy Rapid Modular Ensemble of Satellites) pathfinder is an in-orbit demonstration consisting of a constellation of six 3U nano-satellites hosting simple but innovative detectors for the monitoring of cosmic high-energy transients. The main objective of HERMES Pathfinder is to prove that accurate position of high-energy cosmic transients can be obtained using miniaturized hardware. The transient position is obtained by studying the delay time of arrival of the signal to different detectors hosted by nano-satellites on low Earth orbits. To this purpose, the goal is to achive an overall accuracy of a fraction of a micro-second. In this context, we need to develop novel tools to fully exploit the future scientific data output of HERMES Pathfinder. In this paper, we introduce a new framework to assess the background count rate of a space-born, high energy detector; a key step towards the identification of faint astrophysical transients. We employ a Neural Network (NN) to estimate the background lightcurves on different timescales. Subsequently, we employ a fast change-point and anomaly detection technique to isolate observation segments where statistically significant excesses in the observed count rate relative to the background estimate exist. We test the new software on archival data from the NASA Fermi Gamma-ray Burst Monitor (GBM), which has a collecting area and background level of the same order of magnitude to those of HERMES Pathfinder. The NN performances are discussed and analyzed over period of both high and low solar activity. We were able to confirm events in the Fermi/GBM catalog and found events, not present in Fermi/GBM database, that could be attributed to Solar Flares, Terrestrial Gamma-ray Flashes, Gamma-Ray Bursts, Galactic X-ray flash. Seven of these are selected and analyzed further, providing an estimate of localisation and a tentative classification.
翻译:HERMES Pathfinder(高能快速模块卫星集群)是一项在轨演示,由一组承载简单但创新探测器的6个3U纳米卫星组成,用于监测宇宙高能瞬变。HERMES Pathfinder的主要目标是证明可以使用微型化硬件获得高能宇宙瞬变的准确位置。通过研究信号到达在不同低地球轨道上托管的纳米卫星上的探测器的延迟到达时间,可以获得瞬变位置。为此,我们需要开发新的工具,充分利用HERMES Pathfinder的未来科学数据输出。在本文中,我们介绍了一种评估空间高能探测器背景计数率的新框架;这是确定微弱天体瞬变的关键步骤。我们使用神经网络(NN)估计不同时间尺度上的背景光变曲线。随后,我们采用快速变点和异常检测技术,在观测段中分离出相对于背景估计存在统计学显着过量的观测计数率。我们测试了新软件在NASA费米伽马射线暴监测器(GBM)的存档数据上的性能,其收集面积和背景水平与HERMES Pathfinder相同。讨论并分析了NN的表现,针对高和低太阳活动周期进行了分析。我们能够确认费米/GBM目录中的事件,并发现一些费米/GBM数据库中不存在的事件,可以归因于太阳耀斑、地球伽马射线闪电、伽马射线暴和银盘X射线闪光。其中七个事件被选择并进一步分析,提供了一个定位估计和一个初步的分类。