The minimum number of clauses in a CNF representation of the parity function $x_1 \oplus x_2 \oplus \dotsb \oplus x_n$ is $2^{n-1}$. One can obtain a more compact CNF encoding by using non-deterministic variables (also known as guess or auxiliary variables). In this paper, we prove the following lower bounds, that almost match known upper bounds, on the number $m$ of clauses and the maximum width $k$ of clauses: 1) if there are at most $s$ auxiliary variables, then $m \ge \Omega\left(2^{n/(s+1)}/n\right)$ and $k \ge n/(s+1)$; 2) the minimum number of clauses is at least $3n$. We derive the first two bounds from the Satisfiability Coding Lemma due to Paturi, Pudlak, and Zane.
翻译:在 CNF 中, 对等函数的最小条款数 $x_ 1 \ + x\ 2 +\ dotsb \ opl x_n$ $ 2\\ n+ x_ n$ 。 您可以通过使用非确定变量( 也称为猜测或辅助变量) 获得更紧凑的 CNF 编码 。 在本文中, 我们证明以下较低的界限, 几乎与已知的条款上限相匹配, 在条款的金额和条款的最大宽度上下限上为 $ :1 如果存在最多 $ 的辅助变量, 那么 $m\ ge\ Omega\ left(2 \ n/ (s+1)}/ n\\ leight) $ 和 $k\ ge n/ (s+1) $; 2 最低条款数至少为 3n$ 。 我们从Paturi、 Pudlak 和 Zane 的Lemma 的可满足性 Coding Cotbisbility Co 中得出前两个界限 。