We present a hybrid ML-heuristic approach that we name "Heuristically Assisted Deep Reinforcement Learning (HA-DRL)" to solve the problem of Network Slice Placement Optimization. The proposed approach leverages recent works on Deep Reinforcement Learning (DRL) for slice placement and Virtual Network Embedding (VNE) and uses a heuristic function to optimize the exploration of the action space by giving priority to reliable actions indicated by an efficient heuristic algorithm. The evaluation results show that the proposed HA-DRL algorithm can accelerate the learning of an efficient slice placement policy improving slice acceptance ratio when compared with state-of-the-art approaches that are based only on reinforcement learning.
翻译:我们提出了一种混合的 ML-Heuristic 方法,我们称之为“休眠辅助深层强化学习(HA-DRL) ”, 以解决网络切片定位优化问题。 拟议的方法利用了最近关于深层强化学习(DRL)的工作,以切片放置和虚拟网络嵌入(VNE),并运用了一种超常功能,通过优先考虑高效超常算法所显示的可靠行动,优化了对行动空间的探索。 评估结果表明,拟议的HA-DRL算法可以加速学习高效的切片配置政策,在与仅以强化学习为基础的最新方法相比,改善切片接受率。