This paper studies a novel multi-access coded caching (MACC) model in the two-dimensional (2D) topology, which is a generalization of the one-dimensional (1D) MACC model proposed by Hachem et al. The 2D MACC model is formed by a server containing $N$ files, $K_1\times K_2$ cache-nodes with $M$ files located at a grid with $K_1$ rows and $K_2$ columns, and $K_1\times K_2$ cache-less users where each user is connected to $L^2$ nearby cache-nodes. The server is connected to the users through an error-free shared link, while the users can retrieve the cached content of the connected cache-nodes without cost. Our objective is to minimize the worst-case transmission load over all possible users' demands. In this paper, we first propose a grouping scheme for the case where $K_1$ and $K_2$ are divisible by $L$. By partitioning the cache-nodes and users into $L^2$ groups such that no two users in the same group share any cache-node, we use the shared-link coded caching scheme proposed by Maddah-Ali and Niesen for each group. Then for any model parameters satisfying $\min\{K_1,K_2\}>L$, we propose a transformation approach which constructs a 2D MACC scheme from two classes of 1D MACC schemes in vertical and horizontal projections, respectively. As a result, we can construct 2D MACC schemes that achieve maximum local caching gain and improved coded caching gain, compared to the baseline scheme by a direct extension from 1D MACC schemes.
翻译:本文研究二维(2D)地形学中新型的多存码缓存(MACC)模型,这是Hachem等人提议的一维(1D) MCAC模型的概括化。 2D MAC模型由包含$N的文件服务器组成, K_1\time K_ 2美元缓存节点, 以美元为单位的网格, 1美元行和 2美元列, 以及 $K_ 1\ times K_ 2美元 的无存储量用户模式。 每个用户与附近的缓存节点连接到$L2美元。 服务器通过一个无误共享链接与用户连接。 而用户可以免费检索连接的缓存缓存点内容。 我们的目标是尽可能减少所有用户需求中最坏的传输量。 在本文中, 我们首先提出一个组合, $K_ 1美元 美元和 $K_ 2美元 的缓存机制, 我们从缓存的缓存- D 模式中可以分解 。